GTP hydrolysis by complexes of the signal recognition particle and the signal recognition particle receptor

نویسندگان

  • T Connolly
  • R Gilmore
چکیده

Translocation of proteins across the endoplasmic reticulum membrane is a GTP-dependent process. The signal recognition particle (SRP) and the SRP receptor both contain subunits with GTP binding domains. One GTP-dependent reaction during protein translocation is the SRP receptor-mediated dissociation of SRP from the signal sequence of a nascent polypeptide. Here, we have assayed the SRP and the SRP receptor for GTP binding and hydrolysis activities. GTP hydrolysis by SRP was not detected, so the maximal GTP hydrolysis rate for SRP was estimated to be < 0.002 mol GTP hydrolyzed x mol of SRP-1 x min-1. The intrinsic GTP hydrolysis activity of the SRP receptor ranged between 0.02 and 0.04 mol GTP hydrolyzed x mol of SRP receptor-1 x min-1. A 40-fold enhancement of GTP hydrolysis activity relative to that observed for the SRP receptor alone was obtained when complexes were formed between SRP and the SRP receptor. GTP hydrolysis activity was inhibited by GDP, but not by ATP. Extended incubation of the SRP or the SRP receptor with GTP resulted in substoichiometric quantities of protein-bound ribonucleotide. SRP-SRP receptor complexes engaged in GTP hydrolysis were found to contain a minimum of one bound guanine ribonucleotide per SRP-SRP receptor complex. We conclude that the GTP hydrolysis activity described here is indicative of one of the GTPase cycles that occur during protein translocation across the endoplasmic reticulum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SRP RNA provides the physiologically essential GTPase activation function in cotranslational protein targeting.

The signal recognition particle (SRP) cotranslationally targets proteins to cell membranes by coordinated binding and release of ribosome-associated nascent polypeptides and a membrane-associated SRP receptor. GTP uptake and hydrolysis by the SRP-receptor complex govern this targeting cycle. Because no GTPase-activating proteins (GAPs) are known for the SRP and SRP receptor GTPases, however, it...

متن کامل

Signal sequence recognition and targeting of ribosomes to the endoplasmic reticulum by the signal recognition particle do not require GTP.

The identification of GTP-binding sites in the 54-kDa subunit of the signal recognition particle (SRP) and in both the alpha and beta subunits of the SRP receptor has complicated the task of defining the step in the protein translocation reaction that is controlled by the GTP-binding site in the SRP. Ribonucleotide binding assays show that the purified SRP can bind GDP or GTP. However, crosslin...

متن کامل

Role of Sec61α in the Regulated Transfer of the Ribosome–Nascent Chain Complex from the Signal Recognition Particle to the Translocation Channel

Targeting of ribosome-nascent chain complexes to the translocon in the endoplasmic reticulum is mediated by the concerted action of the signal recognition particle (SRP) and the SRP receptor (SR). Ribosome-stripped microsomes were digested with proteases to sever cytoplasmic domains of SRalpha, SRbeta, TRAM, and the Sec61 complex. We characterized protein translocation intermediates that accumu...

متن کامل

Empty Site Forms of the SRP54 and SRα GTPases Mediate Targeting of Ribosome–Nascent Chain Complexes to the Endoplasmic Reticulum

The SRP54 and SR alpha subunits of the signal recognition particle (SRP) and the SRP receptor (SR) undergo a tightly coupled GTPase cycle that mediates the signal sequence-dependent attachment of ribosomes to the Sec61 complex. Here, we show that SRP54 and SR alpha are in the empty site conformation prior to contact between the SRP-ribosome complex and the membrane-bound SR. Cooperative binding...

متن کامل

Immune-mediated Necrotizing Myopathy With Increased Creatine Phosphokinase and Positive Signal Recognition Particle: A Case Report

Background: Knowledge about Immune-Mediated Necrotizing Myopathy (IMNM) has received significantly attention in recent years. In this study, we report a rare case of IMNM with increased Creatine Phosphokinase (CPK) and positive Signal Recognition Particle (SRP). Clinical Presentation and Intervention: The case was a 67-year-old male patient referred to Firozgar hospital affiliated to the Iran ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 123  شماره 

صفحات  -

تاریخ انتشار 1993